alexa Ionic strength dependence of the binding of methylene blue to chromatin and calf thymus DNA.
Microbiology

Microbiology

Journal of Medical Microbiology & Diagnosis

Author(s): Hagmar P, Pierrou S, Nielsen P, Nordn B, Kubista M

Abstract Share this page

Abstract The binding of the intercalating dye methylene blue (MB) to chromatin and to free DNA has been studied as a function of ionic strength at very low binding ratios (1 MB/400 DNA bases) using absorption spectroscopy. With increasing salt concentration MB is displaced from chromatin to a higher extent than from DNA. The free energy change for MB binding to chromatin is found to be approximately 5 kJ/mole lower than for binding to DNA. This difference can be explained by the reduced number of high affinity binding sites in chromatin due to the presence of histone proteins. The difference in binding energy is virtually independent of the degree of chromatin condensation and also of the valence of counter ions, suggesting that neither the affinity for, nor the number of intercalation sites in the linker DNA is markedly changed upon the salt-induced condensation. The unaffected thermodynamics of the linker binding suggests that factors such as DNA superhelicity and the electrostatic influence from the chromatosomes remain unchanged during chromatin condensation. This article was published in J Biomol Struct Dyn and referenced in Journal of Medical Microbiology & Diagnosis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords