alexa Iron accumulation in the striatum predicts aging-related decline in motor function in rhesus monkeys.
Medicine

Medicine

Journal of Gerontology & Geriatric Research

Author(s): Cass WA, Grondin R, Andersen AH, Zhang Z, Hardy PA,

Abstract Share this page

Abstract Changes in the nigrostriatal system may be involved with the motor abnormalities seen in aging. These perturbations include alterations in dopamine (DA) release, regulation and transport in the striatum and substantia nigra, striatal atrophy and elevated iron levels in the basal ganglia. However, the relative contribution of these changes to the motor deficits seen in aging is unclear. Thus, using the rhesus monkey as a model, the present study was designed to examine several of these key alterations in the basal ganglia in order to help elucidate the mechanisms contributing to age-related motor decline. First, 32 female rhesus monkeys ranging from 4 to 32 years old were evaluated for their motor capabilities using an automated hand-retrieval task. Second, non-invasive MRI methods were used to estimate brain composition and to indirectly measure relative iron content in the striatum and substantia nigra. Third, in vivo microdialysis was used to evaluate basal and stimulus-evoked levels of DA and its metabolites in the striatum and substantia nigra of the same monkeys. Our results demonstrated significant decreases in motor performance, decreases in striatal DA release, and increases in striatal iron levels in rhesus monkeys as they age from young adulthood. A comprehensive statistical analysis relating age, motor performance, DA release, and iron content indicated that the best predictor of decreases in motor ability, above and beyond levels of performance that could be explained by age alone, was iron accumulation in the striatum. This suggests that striatal iron levels may be a biomarker of motor dysfunction in aging; and as such, can be monitored non-invasively by longitudinal brain MRI scans. The results also suggest that treatments aimed at reducing accumulation of excess iron in the striatum during normal aging may have beneficial effects on age-related deterioration of motor performance. This article was published in Neurobiol Aging and referenced in Journal of Gerontology & Geriatric Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords