alexa Iron starvation and culture age activate metacaspases and programmed cell death in the marine diatom Thalassiosira pseudonana.
Environmental Sciences

Environmental Sciences

Hydrology: Current Research

Author(s): Bidle KD, Bender SJ

Abstract Share this page

Abstract In the modern ocean, phytoplankton maintain extremely high primary production/biomass ratios, indicating that they bloom, die, and are replaced weekly. The molecular mechanisms regulating cellular mortality and turnover are largely unknown, even though they effectively short-circuit carbon export to the deep ocean and channel primary productivity to microbial food webs. Here, we present morphological, biochemical, and molecular evidence of caspase-mediated, autocatalytic programmed cell death (PCD) in the diatom Thalassiosira pseudonana in response to iron starvation. Transmission electron microscopy revealed internal degradation of nuclear, chloroplastic, and mitochondrial organelles, all while the plasma membranes remained intact. Cellular degradation was concomitant with dramatic decreases in photosynthetic efficiency, externalization of phosphatidylserine, and significantly elevated caspase-specific activity, with the addition of a broad-spectrum caspase inhibitor rescuing cells from death. A search of the T. pseudonana genome identified six distinct putative metacaspases containing a conserved caspase domain structure. Quantitative reverse transcription-PCR and Western blot analysis revealed differential gene and protein expression of T. pseudonana metacaspases, some of which correlated with physiological stress and caspase activity. Taken together with the recent discovery of the metacaspase-mediated viral infection of phytoplankton (K. D. Bidle, L. Haramaty, J. Barcelos-Ramos, and P. G. Falkowski, Proc. Natl. Acad. Sci. USA 104:6049-6054, 2007), our findings reveal a key role for metacaspases in the turnover of phytoplankton biomass in the oceans. Furthermore, given that Fe is required for photosynthetic electron transfer and is chronically limiting in a variety of oceanic systems, including high-nutrient low-chlorophyll regions, our findings provide a potential ecological context for PCD in these unicellular photoautotrophs.
This article was published in Eukaryot Cell and referenced in Hydrology: Current Research

Relevant Expert PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords