alexa Ischemia reperfusion of the pancreas: a new in vivo model for acute pancreatitis in rats.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Hoffmann TF, Leiderer R, Waldner H, Arbogast S, Messmer K

Abstract Share this page

Abstract Based on the concept that ischemia is an important factor in the pathogenesis of acute pancreatitis, we developed a new model of complete ischemia/reperfusion of the pancreas in the rat. The aim of this study was to investigate the microcirculation of the pancreas after complete and reversible ischemia at different times after reperfusion by using intravital fluorescence microscopy. In addition, the effect of ischemia/reperfusion on the pancreas was assessed by means of light and electron microscopy and measurement of serum pancreas amylase concentration. In 35 adult Sprague-Dawley rats ischemia of the pancreas was induced by temporary occlusion of the four supplying arteries. Sham-operated animals served as controls (group A). After periods of 30 min (group B), 60 min (group C) or 120 min (group D) of ischemia the organ was reperfused. To exclude the influence of hypovolemia on microcirculation in group E (120 min ischemia) hydroxyethylstarch (HES) was given i.v. to maintain central venous pressure at baseline values. For intravital fluorescence microscopy the pancreas was exteriorized on a stage and quantitative analysis of microcirculation, including functional capillary density and leukocyte-endothelium interaction, was performed after 30 min, 1 h and 2 h of reperfusion. Serum pancreas-amylase was measured at control (prior ischemia) and at 2 h after reperfusion. Tissue samples for light and electron microscopy were taken 2 h after reperfusion. In sham-operated animals, functional capillary density (FCD) remained within baseline values (FCD 407.7 +/- 9 cm-1) during reperfusion. Dependent on the time of ischemia and time of reperfusion a gradual reduction in functional capillary density was observed; after 2 h of ischemia only 35\% of capillaries were perfused (FCD 140.9 +/- 28.3 cm-1). Reduced functional capillary density was associated with an increase of perfusion heterogeneity to a maximum of 0.65 +/- 0.12, as against 0.13 +/- 0.02 in control animals. With a 2 h ischemia leukocyte-endothelium interaction was enhanced after 0.5 h of reperfusion (8-fold increase of adherent leukocytes in comparison to control) followed by a further significant increase until 2 h after the beginning of reperfusion. Amylase concentration after ischemia of 2 h (2967 +/- 289 U/l) was significantly higher as compared to controls (1857 +/- 99 U/l). Differences between group E and D were not observed. Pancreatic tissue injury was ascertained by histopathological studies. These results indicate that complete ischemia/reperfusion of the pancreas induces pancreatic microvascular failure. The severity of changes depends on duration of ischemia and duration of reperfusion. The morphological and biochemical changes suggest that ischemia/reperfusion causes an inflammatory reaction as observed in acute pancreatitis.
This article was published in Res Exp Med (Berl) and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords