alexa Isoflurane-induced attenuation of motor evoked potentials caused by electrical motor cortex stimulation during surgery.


Journal of Spine

Author(s): Calancie B, Klose KJ, Baier S, Green BA

Abstract Share this page

Abstract Dysfunction of spinal motor conduction during surgical procedures may not be reflected by changes in somatosensory evoked potential waveforms. A method of monitoring that allows direct and continuous assessment of motor function within the central nervous system during surgery would be useful. This paper describes one such method utilizing noninvasive electric cortical stimulation to evoke muscle activity (the motor evoked potential, or MEP) during surgery. The effect of isoflurane (superimposed on a baseline of N2O/narcotic anesthesia) on MEP's in response to cortical stimulation is specifically examined. Eight patients undergoing elective neurosurgical operations were included in the study. All patients received a background of general anesthesia and partial nondepolarizing neuromuscular blockade. The motor cortex was stimulated electrically via self-adhesive scalp electrodes. Electromyographic responses from multiple muscles were measured with subdermal electroencephalograph-type needle electrodes. Motor responses to stimulation were continually recorded on magnetic tape for off-line analysis. Once closing of the surgical incision was begun, a series of four to five stimuli of constant magnitude were applied to obtain "baseline" MEP responses. Patients were then ventilated with isoflurane for up to 8 minutes, during which time stimuli were continued every 15 to 20 seconds. Comparison was made of MEP responses for trials before, 1 minute after, and 5 minutes after the addition of isoflurane. All patients demonstrated reproducible motor responses to cortical stimulation during surgery. Addition of isoflurane [isoflurane)exp, less than or equal to 0.5\%) to pre-existing anesthesia caused marked attenuation of MEP amplitudes in all patients within 5 minutes of its application, without affecting neuromuscular transmission as judged by direct peripheral nerve stimulation. It is concluded that: 1) monitoring motor system integrity and function with electric transcranial cortical stimulation during surgery is feasible when utilizing an N2O/narcotic anesthetic protocol; and 2) the quality of data obtained will likely suffer with the addition of isoflurane. This article was published in J Neurosurg and referenced in Journal of Spine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version