alexa Isoform-specific regulation of insulin-dependent glucose uptake by Akt protein kinase B.


Journal of Alzheimers Disease & Parkinsonism

Author(s): Bae SS, Cho H, Mu J, Birnbaum MJ

Abstract Share this page

Abstract Recent data have implicated the serine/threonine protein kinase Akt/protein kinase B (PKB) in a diverse array of physiological pathways, raising the question of how biological specificity is maintained. Partial clarification derived from the observation that mice deficient in either of the two isoforms, Akt1/PKBalpha or Akt2/PKBbeta, demonstrate distinct abnormalities, i.e. reduced organismal size or insulin resistance, respectively. However, the question still persists as to whether these divergent phenotypes are due exclusively to tissue-specific differences in isoform expression or distinct capacities for signaling intrinsic to the two proteins. Here we show that Akt2/PKBbeta-/- adipocytes derived from immortalized mouse embryo fibroblasts display significantly reduced insulin-stimulated hexose uptake, clearly establishing that the partial defect in glucose disposal in these mice derives from lack of a cell autonomous function of Akt2/PKBbeta. Moreover, in adipocytes differentiated from primary fibroblasts or immortalized mouse embryo fibroblasts, and brown preadipocytes the absence of Akt2/PKBbeta resulted in reduction of insulin-induced hexose uptake and glucose transporter 4 (GLUT4) translocation, whereas Akt1/PKBalpha was dispensable for this effect. Most importantly, hexose uptake and GLUT4 translocation were completely restored after re-expression of Akt2/PKBbeta in Akt2/PKBbeta-/- adipocytes, but overexpression of Akt1/PKBalpha at comparable levels was ineffective at rescuing insulin action to normal. These results show that the Akt1/PKBalpha and Akt2/PKBbeta isoforms are uniquely adapted to preferentially transmit distinct biological signals, and this property is likely to contribute significantly to the ability of Akt/PKB to play a role in diverse processes. This article was published in J Biol Chem and referenced in Journal of Alzheimers Disease & Parkinsonism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version