alexa Isolation and chondroinduction of a dermis-isolated, aggrecan-sensitive subpopulation with high chondrogenic potential.

Journal of Bioengineering and Bioelectronics

Author(s): Deng Y, Hu JC, Athanasiou KA

Abstract Share this page

Abstract OBJECTIVE: To develop a process that yields tissue-engineered articular cartilage constructs from skin-derived cells. METHODS: Dermis-isolated, aggrecan-sensitive (DIAS) cells were isolated using a modified rapid adherence process. The chondrogenic potential was measured by quantitative reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemistry. Filamentous actin (F-actin) and vinculin organization was detected using fluorescence microscopy. RESULTS: The rapid adherence process led to a selection of DIAS cells, <10\% of the entire population. DIAS cells displayed greater chondroinduction potential, as evidenced by the formation of large numbers of chondrocytic nodules on aggrecan-coated surfaces. In addition, these cells showed higher gene expression and protein production in terms of chondrocytic markers when compared with unpurified dermis cells. Similar patterns of F-actin and vinculin organization were observed between DIAS cells and chondrocytes. Three-dimensional constructs from chondroinduced DIAS cells produced greater amounts of cartilage matrix than constructs from the rest of the dermis populations. CONCLUSION: These findings show a series of steps that work together to form tissue-engineered articular cartilage constructs using DIAS cells. Since skin presents a minimally invasive, relatively abundant cell source for tissue engineering, this study offers evidence of an efficient and stable technique to form cartilage constructs for future cartilage regeneration with autologous cells from skin. This article was published in Arthritis Rheum and referenced in Journal of Bioengineering and Bioelectronics

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords