alexa Isolation of highly heat-resistant Listeria monocytogenes variants by use of a kinetic modeling-based sampling scheme.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Van Boeijen IK, Francke C, Moezelaar R, Abee T, Zwietering MH

Abstract Share this page

Abstract Stable high-hydrostatic-pressure (HHP)-resistant Listeria monocytogenes LO28 variants were previously isolated and characterized. These HHP variants were also more resistant to heat. In addition, nonlinear heat inactivation kinetics pointed toward the existence of heat-resistant variants, although these could not be isolated so far. In this study, we used kinetic modeling of inactivation curves of two isolated HHP variants and their wild type, and this revealed that the probability of finding resistant variants should depend on the nature of the inactivation treatment and the time of exposure. At specific heat and HHP conditions, resistant LO28 and EGDe variants were indeed isolated. Resistant LO28 variants were even isolated after a heat inactivation at 72°C in milk, and these variants showed high resistance to standard pasteurization conditions. The increased resistance of part of the isolated LO28 and EGDe variants was due to mutations in their ctsR genes. For the variants whose ctsR genes and upstream regions were not altered, the mechanisms leading to increased resistance remain to be elucidated. This research showed the strength of kinetic modeling in unraveling the causes of nonlinear inactivation and facilitating the isolation of heat-resistant L. monocytogenes variants.
This article was published in Appl Environ Microbiol and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords