alexa Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta.


Journal of Bone Research

Author(s): In t Anker PS

Abstract Share this page

Recently we reported that second-trimester amniotic fluid (AF) is an abundant source of fetal mesenchymal stem cells (MSCs). In this study, we analyze the origin of these MSCs and the presence of MSCs in human-term AF. In addition, different parts of the human placenta were studied for the presence of either fetal or maternal MSCs. We compared the phenotype and growth characteristics of MSCs derived from AF and placenta. Cells from human second-trimester (mean gestational age, 19(+2) [standard deviation, +/- 1(+3)] weeks, n = 10) and term third-trimester (mean gestational age, 38(+4) [standard deviation, +/- 1] weeks, n = 10) AF, amnion, decidua basalis, and decidua parietalis were cultured in M199 medium supplemented with 10% fetal calf serum and endothelial cell growth factor. Cultured cells were immunophenotypically characterized, the adipogenic and osteogenic differentiation capacity was tested, and the growth kinetics were analyzed. The origin of fetal and maternal cells was determined by molecular human leukocyte antigen typing. We successfully isolated MSCs from second-trimester AF, amnion, and decidua basalis as well as term amnion, decidua parietalis, and decidua basalis. In contrast, MSCs were cultured from only 2 out of 10 term AF samples. The phenotype of MSCs cultured from different fetal and maternal parts of the placenta was comparable. Maternal MSCs from second-trimester and term decidua basalis and parietalis showed a significantly higher expansion capacity than that of MSCs from adult bone marrow (p < .05). Our results indicate that both fetal and maternal MSCs can be isolated from the human placenta. Amnion is a novel source of fetal MSCs, likely contributing to the presence of MSCs in AF. Decidua basalis and decidua parietalis are sources for maternal MSCs. The expansion potency from both fetal and maternal placenta-derived MSCs was higher compared with adult bone marrow-derived MSCs.

This article was published in Stem Cells. and referenced in Journal of Bone Research

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version