alexa Isoprostanes inhibit vascular endothelial growth factor-induced endothelial cell migration, tube formation, and cardiac vessel sprouting in vitro, as well as angiogenesis in vivo via activation of the thromboxane A(2) receptor: a potential link between ox


Journal of Clinical & Experimental Cardiology

Author(s): Benndorf RA, Schwedhelm E, Gnann A, Taheri R, Kom G,

Abstract Share this page

Abstract Isoprostanes are endogenously formed end products of lipid peroxidation. Furthermore, they are markers of oxidative stress and independent risk markers of coronary heart disease. In patients experiencing coronary heart disease, impaired angiogenesis may exacerbate insufficient blood supply of ischemic myocardium. We therefore hypothesized that isoprostanes may exert detrimental cardiovascular effects by inhibiting angiogenesis. We studied the effect of isoprostanes on vascular endothelial growth factor (VEGF)-induced migration and tube formation of human endothelial cells (ECs), and cardiac angiogenesis in vitro as well as on VEGF-induced angiogenesis in the chorioallantoic membrane assay in vivo. The isoprostanes 8-iso-PGF(2alpha), 8-iso-PGE(2), and 8-iso-PGA(2) inhibited VEGF-induced migration, tube formation of ECs, and cardiac angiogenesis in vitro, as well as VEGF-induced angiogenesis in vivo via activation of the thromboxane A(2) receptor (TBXA2R): the specific TBXA2R antagonists SQ-29548, BM 567, and ICI 192,605 but not the thromboxane A(2) synthase inhibitor ozagrel blocked the effect of isoprostanes. The isoprostane 8-iso-PGA(2) degraded into 2 biologically active derivatives in vitro, which also inhibited EC tube formation via the TBXA2R. Moreover, short hairpin RNA-mediated knockdown of the TBXA2R antagonized isoprostane-induced effects. In addition, Rho kinase inhibitor Y-27632 reversed the inhibitory effect of isoprostanes and the thromboxane A(2) mimetic U-46619 on EC migration and tube formation. Finally, the various isoprostanes exerted a synergistic inhibitory effect on EC tube formation. We demonstrate for the first time that isoprostanes inhibit angiogenesis via activation of the TBXA2R. By this mechanism, isoprostanes may contribute directly to exacerbation of coronary heart disease and to capillary rarefaction in disease states of increased oxidative stress. This article was published in Circ Res and referenced in Journal of Clinical & Experimental Cardiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version