alexa Isoproterenol increases active lipoprotein lipase in adipocyte medium and in rat plasma.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Ballart X, Siches M, PeinadoOnsurbe J, LpezTejero D, Llobera M

Abstract Share this page

Abstract White adipose tissue (WAT) lipoprotein lipase (LPL) activity channels diet fat towards storage in adipocytes. Adrenaline (ADR) is accepted to reduce WAT or adipocyte LPL activity (LPLa), but available data are not clear-cut regarding long exposure to ADR in vitro or in vivo. We studied the effects of long exposures to ADR or beta-adrenergic agonist on LPL: in isolated rat adipocytes (3 h) and in rats (>1 day). Isoproterenol (ISO) (1 microM) did not alter LPLmRNA nor LPLa in adipocytes, but increased LPLa in medium more than twofold (3.58 +/- 0.35 vs. 1.32 +/- 0.35 mU/10(6) adipocytes, P < 0.001). Effect was time (not present at 1 h, clear at 2 h) and concentration dependent (high sensitivity from 10 to 100 nM, max at 1 microM). Adenylate cyclase activator or cyclic AMP (cAMP) analogue produced a similar increase. Thus in adipocytes ISO produced an increase in LPLa release and/or a decrease in extracellular LPLa degradation. ADR or ISO treated rats had a two to fourfold decrease in WAT LPLa vs. unchanged LPLmRNA. This decrease was 10-fold in WAT heparin-releasable LPLa (5.7 +/- 0.6 vs. 57.3 +/- 10.2 mU/g, P < 0.001), which represents peri/extracellular LPLa. Plasma LPLa was increased 11-fold by ADR (3.30 +/- 0.58 vs. 0.32 +/- 0.08 mU/ml, P < 0.001) whereas only threefold by ISO (P > 0.01). We suggest that in vivo ADR increased release of active LPL to plasma from endothelial cells of LPL-rich tissue(s)-WAT was probably one of these tissues releasing LPL since it lost 90\% of its peri/extracellular LPLa-and/or decreased degradation of plasma active LPL. Since liver LPLa was not increased, plasma active LPL might be kept away from hepatic degradation by binding to stabilising entities in plasma (fatty acids (FA), lipoproteins or soluble heparan sulphates (HS)). In conclusion, we believe this is the first report stating that: (a) ISO increases LPLa in isolated adipocyte medium, and (b) ADR administration to rats decreases WAT extracellular active LPL and increases preheparin plasma active LPL.

  • Open Access
This article was published in Biochimie and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords