alexa Isothermal titration calorimetry of protein-protein interactions.
Chemical Engineering

Chemical Engineering

Journal of Thermodynamics & Catalysis

Author(s): Pierce MM, Raman CS, Nall BT

Abstract Share this page

Abstract The interaction of biologicalmacromolecules, whether protein-DNA, antibody-antigen, hormone-receptor, etc., illustrates the complexity and diversity of molecular recognition. The importance of such interactions in the immune response, signal transduction cascades, and gene expression cannot be overstated. It is of great interest to determine the nature of the forces that stabilize the interaction. The thermodynamics of association are characterized by the stoichiometry of the interaction (n), the association constant (K(a)), the free energy (DeltaG(b)), enthalpy (DeltaH(b)), entropy (DeltaS(b)), and heat capacity of binding (DeltaC(p)). In combination with structural information, the energetics of binding can provide a complete dissection of the interaction and aid in identifying the most important regions of the interface and the energetic contributions. Various indirect methods (ELISA, RIA, surface plasmon resonance, etc.) are routinely used to characterize biologically important interactions. Here we describe the use of isothermal titration calorimetry (ITC) in the study of protein-protein interactions. ITC is the most quantitative means available for measuring the thermodynamic properties of a protein-protein interaction. ITC measures the binding equilibrium directly by determining the heat evolved on association of a ligand with its binding partner. In a single experiment, the values of the binding constant (K(a)), the stoichiometry (n), and the enthalpy of binding (DeltaH(b)) are determined. The free energy and entropy of binding are determined from the association constant. The temperature dependence of the DeltaH(b) parameter, measured by performing the titration at varying temperatures, describes the DeltaC(p) term. As a practical application of the method, we describe the use of ITC to study the interaction between cytochrome c and two monoclonal antibodies. Copyright 1999 Academic Press. This article was published in Methods and referenced in Journal of Thermodynamics & Catalysis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • Global Conference on Physical Chemistry
    September 18-19, 2017 Dublin, Ireland
  • 2nd International Conference on Applied Chemistry
    October 16-17, 2017 Toronto, Canada
  • 2nd International Conference and Exhibition on Polymer Chemistry
    November 06-08, 2017 Chicago, USA
  • International Conference on Nuclear Chemistry
    December 8-9 , 2016 San Antonio, Texas, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version