alexa Kappa-opioids decrease excitatory transmission in the dentate gyrus of the guinea pig hippocampus.


Journal of Addiction Research & Therapy

Author(s): Wagner JJ, Caudle RM, Chavkin C

Abstract Share this page

Abstract In the guinea pig hippocampus, kappa 1-opioid binding sites were primarily localized in the molecular layer of the dentate gyrus as shown by autoradiography using either the kappa 1-selective radioligand 3H-U69,593 or the nonselective radioligand 3H-diprenorphine in the presence of unlabeled mu- and delta-blocking ligands. In this region, the electrophysiological effects of kappa 1-receptor activation were identified using extracellular and intracellular recordings of dentate granule cell responses. The amplitude of the extracellularly recorded population spike was reduced by U69,593 with an EC50 of 26 nM; this effect was reversible and blocked by the opioid antagonist naloxone. The kappa 1-selective antagonist norbinaltorphimine also blocked the effect of U69,593 with an apparent equilibrium dissociation constant (Ki) of 0.26 nM determined by Schild analysis in the physiologic assay. This value agreed well with the Ki for norbinaltorphimine at kappa 1-binding sites measured by radioligand binding displacement (0.24 nM). These results indicate that the electrophysiologic response observed was likely mediated by kappa 1-receptors. As seen with U69,593, dynorphin B, an endogenous opioid peptide that is present in the dentate gyrus, also inhibited the population spike response. mu- and delta-selective opioid agonists had no effect on the amplitude of the maximally evoked response. Intracellular recordings of dentate granule cells showed no direct effects of U69,593 on the granule cells themselves. However, analysis of synaptic potentials revealed that U69,593 significantly reduced the amplitude of glutaminergic EPSPs evoked by afferent stimulation without affecting IPSP amplitudes. The specific effect of U69,593 application on granule cell EPSPs indicates that presynaptic kappa 1-receptor activation inhibits glutamate release from perforant path terminals in the molecular layer of the dentate gyrus. These results suggest that endogenous dynorphins present in the granule cells may act as feedback inhibitors of the major excitatory input to the dentate gyrus.
This article was published in J Neurosci and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version