alexa Kinetic and structural probing of the precleavage synaptic complex (type 0) formed during phage Mu transposition. Action of metal ions and reagents specific to single-stranded DNA.
Pharmaceutical Sciences

Pharmaceutical Sciences

Biochemistry & Pharmacology: Open Access

Author(s): Wang Z, Namgoong SY, Zhang X, Harshey RM

Abstract Share this page

Abstract In an earlier kinetic study (Wang, Z., and Harshey, R. M. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 699-703), we showed that supercoiling free energy was utilized during Mu transposition to lower the activation barrier of some rate-limiting step in the formation of the cleaved Mu end synaptic complex (type I complex). We report here results from kinetic studies on the assembled but uncleaved synaptic complex (type 0). Based on the estimated rate constants for the formation of type 0 and type I complexes, as well as their temperature and superhelicity dependence, we infer that the type 0 complex is an authentic intermediate in the pathway to Mu end cleavage. Our results are consistent with type 0 production being the rate-limiting step in the overall type I reaction. The conversion of type 0 to type I complex is a fast reaction, does not show strong temperature dependence, and is apparently independent of substrate superhelicity. We have explored the DNA structure within the type 0 complex using chemical and enzymatic probes. The observed susceptibility of DNA outside the Mu ends to single-strand-specific reagents suggests that a helix opening event is associated with type 0 formation. This structural perturbation could account, at least partly, for the high activation barrier to the reaction. There is a close correlation between the appearance of single strandedness near the Mu ends and the superhelicity of the DNA substrate. It is possible that supercoiling energy is utilized in effecting specific conformational transitions within DNA. We have found that Zn2+ and Co2+ ions, like Mg2+ and Mn2+ ions, can efficiently cleave the type 0 complex. However, unlike Mg2+ and Mn2+ ions, Zn2+ and Co2+ ions cannot support assembly of type 0. We discuss the implications of our findings for the mechanism of Mu transposition.
This article was published in J Biol Chem and referenced in Biochemistry & Pharmacology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords