alexa Kinetic, equilibrium and thermodynamic modelling of the sorption of metals from aqueous solution by a silica polyamine composite
Environmental Sciences

Environmental Sciences

Journal of Pollution Effects & Control

Author(s): H Tutu, E Bakatula, S Dlamini, E Rosenberg, V Kailasam

Abstract Share this page

Batch sorption studies were conducted to assess the potential of a phosphonated silica polyamine composite (BPAP) to remove metals (Co, Cu, Fe, Mg, Mn, Ni, U and Zn) from mine waters. The metal adsorption showed a good Langmuir isotherm fit. Ni and Mn fitted both the Freundlich and Langmuir isotherms. The activation energies (Ea) of Co, Mg and Ni ranged between 5 and 40 kJ∙moℓ-1, signifying physisorption while U showed a chemisorption type of adsorption (with Ea > 50 kJ∙moℓ-1). Cu and Fe on the other hand gave negative Ea values, indicating their preference to bind to low-energy sites. The pseudo-second-order kinetic model provided the best correlation of the experimental data, except for Mg and Ni for which the pseudo-first-order model and the Elovich model gave a better fit, respectively. Adsorption was almost constant over a wide pH regime and increased with time. Adsorption increased with concentration of the metals with the exception of Co, Fe and Ni which displayed about a 40% drop at a concentration of 200 mg∙ℓ-1. Desorption experimental data gave poor results except for U which showed 99.9% desorption.

This article was published in Water and referenced in Journal of Pollution Effects & Control

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords