alexa Kinetics of finite dose absorption through skin 1. Vanillylnonanamide.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Kasting GB

Abstract Share this page

Abstract Despite the considerable success in predicting the steady-state dermal absorption rates of chemical compounds from large reservoirs applied to skin, correspondingly little progress has been made in predicting the absorption rate and extent for small doses of topically applied compounds. In the latter case, steady-state absorption rates are generally not obtained, and rapid evaporation or penetration of the dose solvent makes application of permeability coefficient models problematic. This report presents a new analysis of the finite dose problem in terms of a diffusion model with three parameters-a characteristic time for diffusion, h2/D; a skin solubility factor, S(m)h; and a capacity factor for absorption of the dose during the dry down period, M*. These parameters can be related to the molecular weight and oil and water solubilities of the permeant in a manner similar to models describing steady-state absorption from saturated solutions. Some variation of the parameter values based on the chemical nature and volume of the dose solvent is anticipated. The applicability of the model is demonstrated by analyzing the in vitro absorption rates of varying doses of vanillylnonamide (VN, synthetic capsaicin) applied to excised human skin from propylene glycol. The analysis shows that a three-parameter model that assigns all of the resistance to transport to diffusion through the stratum corneum is able to explain most of the significant features of VN absorption through skin.
This article was published in J Pharm Sci and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords