alexa Kinetics of in vitro adsorption and entry of papillomavirus virions.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Culp TD, Christensen ND

Abstract Share this page

Abstract There has been much incongruence in reports addressing the rate at which papillomaviruses enter cultured cells. We used a recently developed QRT-PCR assay (J. Virol. Methods 111 (2003) 135) to analyze the expression, adsorption, and entry kinetics of human papillomavirus type 11 (HPV-11) in multiple cell lines. Parallel experiments with HPV-40 and cottontail rabbit papillomavirus (CRPV) were also performed with biologically relevant lines. Infection was determined by the expression of early transcripts containing the E1 E4 splice junction. Results support previous observations that papillomaviruses may enter cultured cells much more slowly than rates reported for similarly structured viruses (Virology 207 (1995) 136; Virology 307 (2003) 1; J. Virol. 75 (2001) 1565). Additionally, our data suggest that, following adsorption to the cell surface, capsomeric structure remains largely unchanged for many hours as HPV-11 virions remain equally susceptible to neutralization by a nonspecific microbicide and by L1-specific monoclonal antibodies (MAb) targeting both linear and conformationally sensitive epitopes. This article was published in Virology and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version