alexa Kinetics of Solute Adsorption at Solid Solution Interfaces:  A Theoretical Development of the Empirical Pseudo-First and Pseudo-Second Order Kinetic Rate Equations, Based on Applying the Statistical Rate Theory of Interfacial Transport
Environmental Sciences

Environmental Sciences

Journal of Pollution Effects & Control

Author(s): Wladyslaw Rudzinski, Wojciech Plazinski

Abstract Share this page

For practical applications of solid/solution adsorption processes, the kinetics of these processes is at least as much essential as their features at equilibrium. Meanwhile, the general understanding of this kinetics and its corresponding theoretical description are far behind the understanding and the level of theoretical interpretation of adsorption equilibria in these systems. The Lagergren empirical equation proposed at the end of 19th century to describe the kinetics of solute sorption at the solid/solution interfaces has been the most widely used kinetic equation until now. This equation has also been called the pseudo-first order kinetic equation because it was intuitively associated with the model of one-site occupancy adsorption kinetics governed by the rate of surface reaction. More recently, its generalization for the two-sites-occupancy adsorption was proposed and called the pseudo-second-order kinetic equation. However, the general use and the wide applicability of these empirical equations during more than one century have not resulted in a corresponding fundamental search for their theoretical origin. Here the first theoretical development of these equations is proposed, based on applying the new fundamental approach to kinetics of interfacial transport called the Statistical Rate Theory. It is shown that these empirical equations are simplified forms of a more general equation developed here, for the case when the adsorption kinetics is governed by the rate of surface reactions. The features of that general equation are shown by presenting exhaustive model investigations, and the applicability of that equation is tested by presenting a quantitative analysis of some experimental data reported in the literature.

This article was published in The Journal of Physical Chemistry and referenced in Journal of Pollution Effects & Control

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version