alexa KL4-surfactant prevents hyperoxic and LPS-induced lung injury in mice.
Pediatrics

Pediatrics

Journal of Pediatric Neurology and Medicine

Author(s): Kinniry P, Pick J, Stephens S, Jain D, Solomides CC,

Abstract Share this page

Abstract KL(4)-surfactant contains the novel KL(4) peptide, sinapultide, which mimics properties of the hydrophobic pulmonary surfactant protein SP-B, in a phospholipid formulation and may be lung protective in experimental acute respiratory distress syndrome/acute lung injury. Our objective was to determine the protective role of airway delivery of KL(4)-surfactant in murine models of hyperoxic and lipopolysaccharide (LPS)-induced lung injury and further explore the mechanisms of protection. For the hyperoxic injury model, mice exposed to 80\% O(2) for 6 days received an intranasal bolus of vehicle, beractant, or KL(4)-surfactant on days 3, 4, 5, and 6 of the exposure, and lungs were evaluated on day 7. Mice in the LPS-induced lung injury model received an intratracheal bolus of LPS followed by an intranasal bolus of KL(4)-surfactant or control at 1, 3, and 19 hr post-LPS challenge, and lungs were evaluated after 24 hr. To explore the mechanisms of protection, in vitro assays were performed with human and murine endothelial cell monolayers, and polymorphonuclear leukocyte (PMN) transmigration in the presence or absence of KL(4)-surfactant or lipid controls was evaluated. Based on morphology, histopathology, white blood cell count, percentage of PMNs, and protein concentration in bronchoalveolar lavage fluid, our data showed KL(4)-surfactant, unlike vehicle or beractant, blocked neutrophil influx into alveoli and suppressed lung injury. Furthermore, in vitro assays showed KL(4)-surfactant decreased neutrophil transmigration at the endothelial cell level. KL(4)-surfactant decreased inflammation and lung permeability compared with controls in both mouse models of lung injury. Evidence suggests the anti-inflammatory mechanism of the KL(4)-peptide is through inhibition of PMN transmigration through the endothelium. (c) 2006 Wiley-Liss, Inc. This article was published in Pediatr Pulmonol and referenced in Journal of Pediatric Neurology and Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords