alexa Knee biomechanics of the dynamic squat exercise.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Yoga & Physical Therapy

Author(s): Escamilla RF

Abstract Share this page

Abstract PURPOSE: Because a strong and stable knee is paramount to an athlete's or patient's success, an understanding of knee biomechanics while performing the squat is helpful to therapists, trainers, sports medicine physicians, researchers, coaches, and athletes who are interested in closed kinetic chain exercises, knee rehabilitation, and training for sport. The purpose of this review was to examine knee biomechanics during the dynamic squat exercise. METHODS: Tibiofemoral shear and compressive forces, patellofemoral compressive force, knee muscle activity, and knee stability were reviewed and discussed relative to athletic performance, injury potential, and rehabilitation. RESULTS: Low to moderate posterior shear forces, restrained primarily by the posterior cruciate ligament (PCL), were generated throughout the squat for all knee flexion angles. Low anterior shear forces, restrained primarily by the anterior cruciate ligament (ACL), were generated between 0 and 60 degrees knee flexion. Patellofemoral compressive forces and tibiofemoral compressive and shear forces progressively increased as the knees flexed and decreased as the knees extended, reaching peak values near maximum knee flexion. Hence, training the squat in the functional range between 0 and 50 degrees knee flexion may be appropriate for many knee rehabilitation patients, because knee forces were minimum in the functional range. Quadriceps, hamstrings, and gastrocnemius activity generally increased as knee flexion increased, which supports athletes with healthy knees performing the parallel squat (thighs parallel to ground at maximum knee flexion) between 0 and 100 degrees knee flexion. Furthermore, it was demonstrated that the parallel squat was not injurious to the healthy knee. CONCLUSIONS: The squat was shown to be an effective exercise to employ during cruciate ligament or patellofemoral rehabilitation. For athletes with healthy knees, performing the parallel squat is recommended over the deep squat, because injury potential to the menisci and cruciate and collateral ligaments may increase with the deep squat. The squat does not compromise knee stability, and can enhance stability if performed correctly. Finally, the squat can be effective in developing hip, knee, and ankle musculature, because moderate to high quadriceps, hamstrings, and gastrocnemius activity were produced during the squat.
This article was published in Med Sci Sports Exerc and referenced in Journal of Yoga & Physical Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords