alexa Knowledge based modelling of homologous proteins, Part I: Three-dimensional frameworks derived from the simultaneous superposition of multiple structures.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Bioequivalence & Bioavailability

Author(s): Sutcliffe MJ, Haneef I, Carney D, Blundell TL

Abstract Share this page

Abstract An approach is described for modelling the three-dimensional structure of a protein from the tertiary structures of several homologous proteins that have been determined by X-ray analysis. A method is developed for the simultaneous superposition of several protein molecules and for the calculation of an 'average structure' or 'framework'. Investigation of the convergence properties of this method, in the case of both weighted and unweighted least squares, demonstrates that both give a unique answer and the latter is robust for an homologous family of proteins. Multi-dimensional scaling is used to subgroup of the proteins with respect to structural homology. The framework calculated on the basis of the family of homologous proteins, or of an appropriate subgroup, is used to align fragments of the known protein structures of high sequence homology with the unknown. This alignment provides a basis for model building the tertiary structure. Different techniques for using the framework to model the mainchain of various globins and an immunoglobulin domain in the structurally conserved regions are investigated.
This article was published in Protein Eng and referenced in Journal of Bioequivalence & Bioavailability

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords