alexa Laser biomodulation of normal and neoplastic cells.


Advanced Techniques in Biology & Medicine

Author(s): AlWatban FA, Andres BL, AlWatban FA, Andres BL

Abstract Share this page

Abstract This study was designed to determine the laser dose for the stimulation, zero-bioactivation, and inhibition of normal and neoplastic cells in vitro. The medical use of laser biomodulation has been occurring for decades in the area of tissue healing and inflammatory conditions. The potential to modulate the regeneration and differentiation of early cellular precursors by laser photons is a valuable endeavor searching for novel and efficient methods. A 35-mW HeNe (632.8-nm) laser and power density of 1.25 mW/cm(2) was used to irradiate tissue culture dishes seeded with 400 cells/dish of normal cells (CHO, CCL-226, 3 T3, and HSF) and neoplastic cells (EMT-6 and RIF-1). All cell lines were cultured using DMEM supplemented with 10\% and 5\% FBS, 2 mM glutamine and 100 U pen-strep antibiotic. Irradiation times of 16, 32, 48, 64, 80, 96, 112, 128, 144, and 160 s for three consecutive days to deliver cumulative doses of 60, 120, 180, 240, 300, 360, 420, 480, 540, and 600 mJ/cm(2) were done, respectively. Cell cultures were stained and colony-forming efficiency was determined. Data analysis was done using Student's t test, α = 0.05. A trend of stimulation, zero-bioactivation, and inhibition in all cell lines was observed except for CCL-226 which gave a pattern of inhibition, zero-bioactivation, and inhibition. The optimum biostimulatory dose was at 180 mJ/cm(2) and bioinhibitory doses were from 420-600 mJ/cm(2) cumulative doses. This study established the dose-dependency of cell growth to laser treatments, that the extent of cellular proliferation is influenced by the type of cells involved, and the risk when laser irradiation is performed on patients with undiagnosed neoplasms and during pregnancy. On the other hand, the ability of laser irradiation to regulate embryonic fibroblasts and human skin fibroblast in vitro suggests possible laser biomodulatory effects on embryonic and adult stem cells directed for tissue regeneration. Studies on the effects of light treatments exploring different laser parameters for the clonal expansion and differentiation of stem cells are recommended. This article was published in Lasers Med Sci and referenced in Advanced Techniques in Biology & Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version