alexa Laser induced photocatalytic degradation of hazardous dye (Safranin-O) using self synthesized nanocrystalline WO3.
Materials Science

Materials Science

Journal of Powder Metallurgy & Mining

Author(s): Hayat K, Gondal MA, Khaled MM, Yamani ZH, Ahmed S

Abstract Share this page

Abstract The photocatalytic degradation of Safranin-O (known as Basic Red 2) in water using locally synthesized nanocrystalline WO(3) as a photocatalyst was investigated under UV laser irradiation. The photo-oxidation removal of the dye was monitored by UV-vis spectrophotometer. The blank experiments for either laser irradiated only Safranin-O solution or the suspension containing WO(3) and Safranin-O in the dark showed that both laser illumination and the photocatalyst were essential for the removal of Safranin-O. The effect of experimental parameters including laser energy, catalyst loading, solution pH and the initial dye concentration on photocatalytic degradation of Basic Red 2 were also investigated. Results indicate that the rate of reaction is strongly influenced by the adsorption of an azo dye into the surface of the photocatalyst materials and suggests an optimum catalyst loading and dye concentration for the degradation reaction. It was investigated that the adsorption of the dye decreases at higher alkaline pH because both catalyst and substrate are negatively charged, developing repulsive forces between them. Kinetic data obtained reveals that the rate of the reaction obeys the first-order kinetics. Copyright © 2010 Elsevier B.V. All rights reserved. This article was published in J Hazard Mater and referenced in Journal of Powder Metallurgy & Mining

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords