alexa Laser photobiomodulation of wound healing: a review of experimental studies in mouse and rat animal models.
Dermatology

Dermatology

Journal of Clinical & Experimental Dermatology Research

Author(s): Peplow PV, Chung TY, Baxter GD

Abstract Share this page

Abstract OBJECTIVES: This investigation reviewed experimental studies of laser irradiation of wound healing in mice and rats published from 2003 to August 2008, respectively, to assess putative stimulatory effects of this treatment. BACKGROUND: Animal models, including rodents, attempt to reflect human wound healing and associated problems such as dehiscence, ischemia, ulceration, infection, and scarring. They have played a key role in furthering understanding of underlying mechanisms involved in impaired wound healing, and in testing new therapeutic strategies including laser irradiation. METHOD: Original research papers investigating effects of laser or monochromatic light therapy on wound healing in mice and rats and published from January 2003 to August 2008 were retrieved from library sources, PubMed and Medline databases, reference lists from retrieved papers, and hand searches of relevant journals. Papers were selected for this review with regard to specific inclusion and exclusion criteria. Studies were critically reviewed in terms of study design, methodology, and appropriateness of laser irradiation parameters. RESULTS: The literature search identified eight studies in mice and 39 in rats. A variety of wound models were investigated, including acute-wound, impaired-healing, and chronic-wound models. Considerable variation was observed in research design, methodology, and irradiation parameters employed, limiting comparison of research findings between studies. Inadequate reporting of key experimental details, or errors in specification and/or calculation of key irradiation parameters was also found. Evidence from the studies reviewed suggested that use of red or infrared wavelength at a range of dosage parameters (median 4.2 J cm(-2)) results in significant benefits in measured parameters of wound healing. Interestingly, coherence does not seem essential to the photobiomodulatory effects of 'laser' phototherapy. CONCLUSION: Studies reviewed consistently demonstrated the ability of laser or monochromatic light to photobiomodulate wound healing processes in experimental wounds in rats and mice, and strongly support the case for further controlled research in humans. This article was published in Photomed Laser Surg and referenced in Journal of Clinical & Experimental Dermatology Research

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords