alexa Lentiviral-transduced human mesenchymal stem cells persistently express therapeutic levels of enzyme in a xenotransplantation model of human disease.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Genetic Syndromes & Gene Therapy

Author(s): Meyerrose TE, Roberts M, Ohlemiller KK, Vogler CA, Wirthlin L,

Abstract Share this page

Abstract Bone marrow-derived mesenchymal stem cells (MSCs) are a promising platform for cell- and gene-based treatment of inherited and acquired disorders. We recently showed that human MSCs distribute widely in a murine xenotransplantation model. In the current study, we have determined the distribution, persistence, and ability of lentivirally transduced human MSCs to express therapeutic levels of enzyme in a xenotransplantation model of human disease (nonobese diabetic severe combined immunodeficient mucopolysaccharidosis type VII [NOD-SCID MPSVII]). Primary human bone marrow-derived MSCs were transduced ex vivo with a lentiviral vector expressing either enhanced green fluorescent protein or the lysosomal enzyme beta-glucuronidase (MSCs-GUSB). Lentiviral transduction did not affect any in vitro parameters of MSC function or potency. One million cells from each population were transplanted intraperitoneally into separate groups of neonatal NOD-SCID MPSVII mice. Transduced MSCs persisted in the animals that underwent transplantation, and comparable numbers of donor MSCs were detected at 2 and 4 months after transplantation in multiple organs. MSCs-GUSB expressed therapeutic levels of protein in the recipients, raising circulating serum levels of GUSB to nearly 40\% of normal. This level of circulating enzyme was sufficient to normalize the secondary elevation of other lysosomal enzymes and reduce lysosomal distention in several tissues. In addition, at least one physiologic marker of disease, retinal function, was normalized following transplantation of MSCs-GUSB. These data provide evidence that transduced human MSCs retain their normal trafficking ability in vivo and persist for at least 4 months, delivering therapeutic levels of protein in an authentic xenotransplantation model of human disease.
This article was published in Stem Cells and referenced in Journal of Genetic Syndromes & Gene Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords