alexa Lesion development in focused ultrasound surgery: a general model.
Geology & Earth Science

Geology & Earth Science

Journal of Earth Science & Climatic Change

Author(s): Hill CR, Rivens I, Vaughan MG, ter Haar GR

Abstract Share this page

Abstract An analytical model has been constructed for the process of formation of thermal lesions in tissue, resulting from exposure to intense, highly focused ultrasound beams such as may be used in minimally invasive surgery. The model assumes a Gaussian approximation to beam shape in the focal region and predicts, for any such focal beam, the time delay to initiation of a lesion and the subsequent time course of growth of that lesion in lateral and axial dimensions, taking into account the effects of thermal diffusion and blood perfusion. The necessary approximations and assumptions of the model are considered. Comparison of predictions with experimentally measured data on excised pig liver indicate generally good agreement. Comparisons are also made of this theory with previously published data on exposure-time dependence of lesioning threshold intensity. Deficiencies are identified in existing practice for measuring and reporting acoustic exposures for focused ultrasound surgery, and the proposal is therefore made that a quantity that would be more satisfactory, from the viewpoints both of metrology and biophysical relevance, is the intensity spatially averaged over the area enclosed by the half-pressure-maximum contour in the focal plane, as determined under linear conditions, provisionally denoted as ISAL.
This article was published in Ultrasound Med Biol and referenced in Journal of Earth Science & Climatic Change

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version