alexa Life cycle of decidual cells.
Molecular Biology

Molecular Biology

Journal of Cell Science & Therapy

Author(s): Mikhailov VM

Abstract Share this page

Abstract The decisive events in the development of decidual cells (DC) are presented through examples of human and rodent decidua. Human decidua is formed by large decidual cells (LDC), endometrial granulated cells (eGC), and small decidual cells. The LDC form the main type of decidual membranes, which determine the morphological characteristics of the decidua as a tissue. Immediate precursor cells of LDC are located below the basement membrane of the uterine epithelium before and during implantation. At the next stage of differentiation, LDC acquire a spindle-like shape. Rodent LDC form an epithelium-like structure with gland properties at the terminal stage of differentiation. The single-cell structure of human decidua is a derivative of the epithelial organization of rodent decidua. Spindle-like rat LDC are characterized by a high level of protein, RNA, and DNA synthesis and by intensive proliferation. At the beginning of pregnancy, a cell proliferation predominates over cell loss. By Days 12-13 of rat pregnancy LDC loss reaches 80\% per day. Terminally differentiated LDC (tLDC) disappear from decidua due to apoptosis. Apoptosis of tLDC and the exhaustion of their precursors account for the disappearance of LDC in the middle of rat pregnancy. Human term decidua is composed of living cells. Human LDC (hLDC) comprise the largest part of human decidual cells (hLDC). hLDC account for 60-90\% of hDC but their relative amount can decrease to 35\% in the case of significant cell loss under unfavorable conditions. A decrease of LDC is not accompanied by DC proliferation. The lack of ability of decidua to compensate for DC loss suggests DC is a growing type of cell population without cambial cells. LDC function largely by blebbing and budding. Human and rat endometrial granulated cells (eGC) are characterized by a low level of natural killer (NK) activity and a high level of natural suppressor (NS) activity. The combination of NK and NS properties is characteristic of the eGC immunoregulatory function. Other functions of decidua include control of inflammation and trophoblast growth and expansion in the uterus. The life span of decidual cells is limited by pregnancy.
This article was published in Int Rev Cytol and referenced in Journal of Cell Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords