alexa Ligand configurational entropy and protein binding.
General Science

General Science

Journal of Bioterrorism & Biodefense

Author(s): Chang CE, Chen W, Gilson MK

Abstract Share this page

Abstract The restriction of a small molecule's motion on binding to a protein causes a loss of configurational entropy, and thus a penalty in binding affinity. Some energy models used in computer-aided ligand design neglect this entropic penalty, whereas others account for it based on an expected drop in the number of accessible rotamers upon binding. However, the validity of the physical assumptions underlying the various approaches is largely unexamined. The present study addresses this issue by using Mining Minima calculations to analyze the association of amprenavir with HIV protease. The computed loss in ligand configurational entropy is large, contributing approximately 25 kcal/mol (4.184 kJ/kcal) to DeltaG degrees. Most of this loss results from narrower energy wells in the bound state, rather than a drop in the number of accessible rotamers. Coupling among rotation/translation and internal degrees of freedom complicates the decomposition of the entropy change into additive terms. The results highlight the potential to gain affinity by designing conformationally restricted ligands and have implications for the formulation of energy models for ligand scoring.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Bioterrorism & Biodefense

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version