alexa Lignin structure in a mutant pine deficient in cinnamyl alcohol dehydrogenase.
Chemical Engineering

Chemical Engineering

Journal of Analytical & Bioanalytical Techniques

Author(s): Lapierre C, Pollet B, MacKay JJ, Sederoff RR

Abstract Share this page

Abstract Cinnamyl alcohol dehydrogenase (CAD) activity is deficient in loblolly pine (Pinus taeda L.) harboring a mutated allele of the cad gene (cad-n1). We compared lignin structure of CAD-deficient and wild-type pines, both types segregating within full-sib families obtained by controlled crosses. The type and frequency of lignin building units and distribution of interunit bonds were determined from the GC-MS analysis of thioacidolysis monomers and dimers. While the lignin content was only slightly reduced, the lignin structure was dramatically modified by the mutation in both mature and juvenile trees. Lignins from CAD-deficient pine displayed unusually high levels of coniferaldehyde and dihydroconiferyl alcohol. In addition, biphenyl and biphenyl ether bonds were in large excess in these abnormal lignins. These results suggest that the CAD-deficient pines efficiently compensate for the shortage in normal lignin precursors by utilizing nontraditional wall phenolics to construct unusual lignins particularly enriched in resistant interunit bonds.
This article was published in J Agric Food Chem and referenced in Journal of Analytical & Bioanalytical Techniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version