alexa Lilly lecture 1989. Toward physiological understanding of glucose tolerance. Minimal-model approach.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular and Genetic Medicine

Author(s): Bergman RN

Abstract Share this page

Abstract Glucose tolerance depends on a complex interaction among insulin secretion from the beta-cells, clearance of the hormone, and the actions of insulin to accelerate glucose disappearance and inhibit endogenous glucose production. An additional factor, less well recognized, is the ability of glucose per se, independent of changes in insulin, to increase glucose uptake and suppress endogenous output (glucose effectiveness). These factors can be measured in the intact organism with physiologically based minimal models of glucose utilization and insulin kinetics. With the glucose minimal model, insulin sensitivity (SI) and glucose effectiveness (SG) are measured by computer analysis of the frequently sampled intravenous glucose tolerance test. The test involves intravenous injection of glucose followed by tolbutamide or insulin and frequent blood sampling. SI varied from a high of 7.6 x 10(-4) min-1.microU-1.ml-1 in young Whites to 2.3 x 10(-4) min-1.microU-1.ml-1 in obese nondiabetic subjects; in all of the nondiabetic subjects, SG was normal. In subjects with non-insulin-dependent diabetes mellitus (NIDDM), not only was SI reduced 90\% below normal (0.61 +/- 0.16 x 10(-4) min-1.microU-1.ml-1), but in this group alone, SG was reduced (from 0.026 +/- 0.008 to 0.014 +/- 0.002 min-1); thus, defects in SI and SG are synergistic in causing glucose intolerance in NIDDM. One assumption of the minimal model is that the time delay in insulin action on glucose utilization in vivo is due to sluggish insulin transport across the capillary endothelium. This was tested by comparing insulin concentrations in plasma with those in lymph (representing interstitial fluid) during euglycemic-hyperinsulinemic glucose clamps. Lymph insulin was lower than plasma insulin at basal (12 vs. 18 microU/ml) and at steady state, indicating significant loss of insulin from the interstitial space, presumably due to cellular uptake of the insulin-receptor complex. Additionally, during clamps, lymph insulin changed more slowly than plasma insulin, but the rate of glucose utilization followed a time course identical with that of lymph (r = .96) rather than plasma (r = .71). Thus, lymph insulin, which may be reflective of interstitial fluid, is the signal to which insulin-sensitive tissues are responding. These studies support the concept that, at physiological insulin levels, the time for insulin to cross the capillary endothelium is the process that determines the rate of insulin action in vivo.(ABSTRACT TRUNCATED AT 400 WORDS)
This article was published in Diabetes and referenced in Journal of Molecular and Genetic Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd Antibodies and Bio Therapeutics Congress & B2B
    November 08-09, 2017 Las Vegas, Nevada, USA
  • 19th World Congress on Biotechnology
    November 13-14, 2017 Osaka, Japan
  • 4th World Conference on Synthetic Biology and Genetic Engineering
    November 9-10, 2017 Singapore City, Singapore

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords