alexa Linear birefringence of the retinal nerve fiber layer measured in vitro with a multispectral imaging micropolarimeter.
Engineering

Engineering

Journal of Applied Mechanical Engineering

Author(s): Huang XR, Knighton RW

Abstract Share this page

Abstract Scanning laser polarimetry (SLP) assesses the retinal nerve fiber layer (RNFL) for glaucoma diagnosis by detecting the birefringence of the peripapillary RNFL. A detailed understanding of SLP requires an accurate value for RNFL birefringence in order to relate measured retardance to RNFL thickness, but current knowledge of this value is limited. A multispectral imaging micropolarimeter of PSC'A type was used to measure the retardance in transmission of the RNFL of isolated rat retina before (living) and after (fixed) 20 min of glutaraldehyde fixation. The thickness of the nerve fiber bundles measured was then determined histologically. As previously known from reflectance measurements, in transmission the RNFL behaved as a linear retarder. The retardance of the RNFL was constant at wavelengths from 440 to 830 nm and persisted after tissue fixation. In 37 nerve fiber bundles of 8 retinas, the average RNFL birefringence was 0.23 nm/microm before and 0.19 nm/microm after fixation, with an uncertainty of 0.01 nm/microm. The wavelength independence is consistent with a mechanism of form birefringence from thin cylindrical organelles. These results allow extrapolation of previous visible wavelength measurements to the near-infrared wavelengths used by SLP and validate the use of fixed tissue for RNFL research. This article was published in J Biomed Opt and referenced in Journal of Applied Mechanical Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords