alexa Linker histone H1 per se can induce three-dimensional folding of chromatin fiber.
Medicine

Medicine

Journal of Gerontology & Geriatric Research

Author(s): Hizume K, Yoshimura SH, Takeyasu K

Abstract Share this page

Abstract Higher-order architectures of chromosomes play important roles in the regulation of genome functions. To understand the molecular mechanism of genome packing, an in vitro chromatin reconstitution method and a single-molecule imaging technique (atomic force microscopy) were combined. In 50 mM NaCl, well-stretched beads-on-a-string chromatin fiber was observed. However, in 100 mM NaCl, salt-induced interaction between nucleosomes caused partial aggregation. Addition of histone H1 promoted a further folding of the fiber into thicker fibers 20-30 nm in width. Micrococcal nuclease digestion of these thicker fibers produced an approximately 170 bp fragment of nucleosomal DNA, which was approximately 20 bp longer than in the absence of histone H1 ( approximately 150 bp), indicating that H1 is correctly placed at the linker region. The width of the fiber depended on the ionic strength. Widths of 20 nm in 50 mM NaCl became 30 nm as the ionic strength was changed to 100 mM. On the basis of these results, a flexible model of chromatin fiber formation was proposed, where the mode of the fiber compaction changes depending both on salt environment and linker histone H1. The biological significance of this property of the chromatin architecture will be apparent in the closed segments ( approximately 100 kb) between SAR/MAR regions. This article was published in Biochemistry and referenced in Journal of Gerontology & Geriatric Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords