alexa Linking cyclins to transcriptional control.
Oncology

Oncology

Journal of Integrative Oncology

Author(s): Coqueret O, Coqueret O, Coqueret O, Coqueret O

Abstract Share this page

Abstract Cell cycle activation is coordinated by D-type cyclins which are rate limiting and essential for the progression through the G1 phase of the cell cycle. D-type cyclins bind to and activate the cyclin-dependent kinases Cdk4 and Cdk6, which in turn phosphorylate their downstream target, the retinoblastoma protein Rb. Upon Rb phosphorylation, the E2F transcription factors activate the expression of S-phase genes and thereby induce cell cycle progression. The raise of cyclin D levels in early G1 also serves to titrate Kip/Cip proteins away from cyclinE/Cdk2 complexes, further accelerating cell cycle progression. Therefore, cyclin D plays essential roles in the response to mitogens, transmitting their signal to the Rb/E2F pathway. Surprisingly, cyclin D1-deficient animals are viable and have developmental abnormalities limited to restricted tissues, such as retina, the nervous system and breast epithelium. This observation, combined with several other studies, have raised the possibility that cyclin D1 may have new activities that are unrelated to its function as a cdk regulatory subunit and as regulator of Rb. Effectively, cyclin D has been reported to have transcriptional functions since it interacts with several transcription factors to regulate their activity. Most often, this effect does not rely on the kinase function of Cdk4, indicating that this function is probably independent of cell cycle progression. Further extending its role in gene regulation, cyclin D interacts with histone acetylases such as P/CAF or NcoA/SRC1a but also with components of the transcriptional machinery such as TAF(II)250. Therefore, these studies suggest that the functions of cyclin D might need to be reevaluated. They have established a new cdk-independent role of cyclin D1 as a transcriptional regulator, indicating that cyclin D1 can act via two different mechanisms, as a cdk activator it regulates cell cycle progression and as a transcriptional regulator, it modulates the activity of transcription factors.
This article was published in Gene and referenced in Journal of Integrative Oncology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords