alexa Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Heron DS, Shinitzky M, Hershkowitz M, Samuel D

Abstract Share this page

Abstract The binding of [3H]serotonin to mouse brain crude membrane and synaptosomal membrane preparations was investigated as a function of membrane fluidity changes by lipids. The microviscosity (eta) of the synaptic membranes was increased by in vitro incubation with either cholesteryl hemisuccinate or stearic acid, resulting in an up to 5-fold increase in the specific binding of [3H]serotonin. Serotonin binding increased progressively until it reached a maximum at 1.75 relative eta units; then it declined. Fluidization of membrane lipids, by treatment with lecithin or linoleic acid, caused a small but significant decrease in serotonin binding. These observations are compatible with the concept of vertical displacement of membrane proteins, indicating that in the untreated brain tissue the accessibility (Bmax) of serotonin receptor binding sites constitutes only a fraction (about 20\%) of the potential binding capacity stored in the membrane. Scatchard plots of [3H]serotonin binding, at different eta values, indicate a continuous change in the binding affinity (Kd) of serotonin to its receptor, concomitant with changes in its accessibility. These results may have important implications for physiological processes in the central nervous system, which are associated with modulation of membrane lipids, such as aging. In addition, the regional heterogeneity and plasticity of receptors may be accounted for by differences in membrane lipid fluidity. It was found here that various brain regions differ markedly in their membrane lipid viscosity.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords