alexa Lipid signaling: sleep, synaptic plasticity, and neuroprotection.
Pharmaceutical Sciences

Pharmaceutical Sciences

Biochemistry & Pharmacology: Open Access

Author(s): Chen C, Bazan NG

Abstract Share this page

Abstract Increasing evidence indicates that bioactive lipids participate in the regulation of synaptic function and dysfunction. We have demonstrated that signaling mediated by platelet-activating factor (PAF) and cyclooxygenase (COX)-2-synthesized PGE2 is involved in synaptic plasticity, memory, and neuronal protection [Clark GD, Happel LT, Zorumski CF, Bazan NG. Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor. Neuron 1992; 9:1211; Kato K, Clark GD, Bazan NG, Zorumski CF. Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature 1994; 367:175; Izquierdo I, Fin C, Schmitz PK, et al. Memory enhancement by intrahippocampal, intraamygdala or intraentorhinal infusion of platelet-activating factor measured in an inhibitory avoidance. Proc Natl Acad Sci USA 1995; 92:5047; Chen C, Magee CJ, Bazan NG. Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity. J Neurophysiol 2002; 87:2851]. Recently, we found that prolonged continuous wakefulness (primarily rapid eye movement (REM)-sleep deprivation, SD) causes impairments in hippocampal long-term synaptic plasticity and hippocampus-dependent memory formation [McDermott CM, LaHoste GJ, Chen C, Musto A, Bazan NG, Magee JC. Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci 2003; 23:9687]. To explore the mechanisms underlying SD-induced impairments, we have studied several bioactive lipids in the hippocampus following SD. It appears that SD causes increases in prostaglandin D2 (PGD2) and 2-arachidonylglycerol (2-AG), and a decrease in PGE2, suggesting that these lipid messengers participate in memory consolidation during REM sleep. We have also explored the formation of endogenous neuroprotective lipids. Toward this aim, we have used ischemia-reperfusion damage and LC-PDA-ESI-MS-MS-based lipidomic analysis and identified docosanoids derived from synaptic phospholipid-enriched docosahexaenoic acid. Some of the docosanoids exert potent neuroprotective bioactivity [Marcheselli VL, Hong S, Lukiw WJ, et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 2003; 278:43807; Mukherjee PK, Marcheselli VL, Serhan CN, Bazan, NG. Neuroprotectin D1: A docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Nat Acad Sci USA 2004; 101:8491). Taken together, these observations that signaling lipids participate in synaptic plasticity, cognition, and survival indicate that lipid signaling is closely associated with several functions (e.g; learning and memory, sleep, and experimental stroke) and pathologic events. Alterations in endogenous signaling lipids or their receptors resulting from drug abuse lead to changes in synaptic circuitry and induce profound effects on these important functions. In the present article, we will briefly review bioactive lipids involved in sleep, synaptic transmission and plasticity, and neuroprotection, focusing mainly on our experimental studies and how these signaling molecules are related to functions and implicated in some neurologic disorders. This article was published in Prostaglandins Other Lipid Mediat and referenced in Biochemistry & Pharmacology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

OMICS International Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version