alexa Lipopolysaccharide-induced enterocyte-derived nitric oxide induces intestinal monolayer permeability in an autocrine fashion.
Gastroenterology

Gastroenterology

Journal of Gastrointestinal & Digestive System

Author(s): Forsythe RM, Xu DZ, Lu Q, Deitch EA

Abstract Share this page

Abstract Studies indicate that endotoxin (LPS) causes intestinal injury, increases inducible nitric oxide synthase (iNOS) activity, leads to increased NO production, and promotes bacterial translocation (BT). To investigate the mechanism by which LPS causes gut injury and to test the hypothesis that NO produced by enterocytes promotes gut injury in an autocrine fashion, rat intestinal epithelial cell (IEC-6) monolayers were tested. IEC-6 monolayers grown in a bicameral system were incubated with media or with LPS (25 microg/mL) and tested for permeability to phenol red, BT, and nitrate/nitrite (NO2/NO3) production. To determine the direct effect of NO on permeability, monolayers were incubated with the NO donor S-nitroso-acetylpenicillinamide (SNAP; 1 mM) and tested for permeability. Next, the protective effects of two NOS inhibitors (L-NMMA and L-NIL) were tested. Finally, to determine if LPS-induced permeability occurs via a poly (ADP-ribose) synthetase- (PARS) dependent pathway, monolayers incubated with LPS alone or with the PARS inhibitor, INH2BP (100 microM) were tested. LPS significantly increased IEC-6 permeability to phenol red, as well as increased NO2/NO3 by 20-fold (P < 0.001) and increased BT 10-fold (P < 0.001). SNAP mimicked the effect of LPS and significantly increased both permeability to phenol red and BT. Inhibition of iNOS significantly decreased the LPS-induced increase in monolayer permeability and BT (P < 0.05). Monolayers incubated with INH2BP had significantly decreased permeability to phenol red and BT, suggesting that LPS-induced NO production increases monolayer permeability at least in part via a PARS-dependent mechanism. In summary, LPS-induced disruption of monolayer barrier function appears to be related, at least in part, to enterocyte produced NO. This supports the hypothesis that NO produced by LPS-stimulated enterocytes promotes injury in an autocrine fashion and highlights the fact that enterocytes can be a target as well as a producer of NO.
This article was published in Shock and referenced in Journal of Gastrointestinal & Digestive System

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords