alexa Lithium ion inhibits nerve growth factor-induced neurite outgrowth and phosphorylation of nerve growth factor-modulated microtubule-associated proteins.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Burstein DE, Seeley PJ, Greene LA

Abstract Share this page

Abstract LiCl (2.5-20 mM) reversibly suppressed nerve growth factor (NGF)-induced neurite outgrowth by cultured rat PC 12 pheochromocytoma cells. Similar concentrations of LiCl also reversibly blocked NGF-dependent regeneration of neurites by PC12 cells that had been primed by long-term pre-exposure to NGF and by cultured newborn mouse sympathetic neurons. In contrast, transcription-dependent responses of PC12 cells to NGF such as priming and induction of the NGF-inducible large external glycoprotein, occurred despite the presence of Li+. SDS PAGE analysis of total cellular phosphoproteins (labeled by 2-h exposure to 32P-orthophosphate) from neurite-bearing primed PC12 cells revealed that Li+ reversibly inhibited the phosphorylation of a band of Mr 64,000 that was barely detectable in NGF-untreated PC12 cells. However, Li+ did not appear to affect the labeling of other phosphoproteins in either NGF-primed or untreated PC12 cultures, nor did it affect the rapid increase in phosphorylation of several proteins that occurs when NGF is first added to unprimed cultures. Several criteria indicated that the NGF-inducible phosphoprotein of Mr 64,000 is a microtubule-associated protein (MAP). Of the NGF-inducible phosphorylated MAPs that have been detected in PC12 cells (Mr 64,000, 72,000, 80,000, and 320,000), several (Mr 64,000, 72,000, and 80,000) were found to be substantially less phosphorylated in the presence of Li+. Neither a phorbol ester tumor promotor nor permeant cAMP analogs reversed the inhibitory effects of Li+ on neurite outgrowth or on phosphorylation of the component of Mr 64,000. Microtubules are a major and required constituent of neurites, and MAPs may regulate the assembly and stability of neuritic microtubules. The observation that Li+ selectively inhibits NGF-induced neurite outgrowth and MAP phosphorylation suggests a possible causal relationship between these two events.
This article was published in J Cell Biol and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords