alexa Loading of trained inspiratory muscles speeds lactate recovery kinetics.
Pulmonology

Pulmonology

Journal of Pulmonary & Respiratory Medicine

Author(s): Brown PI, Sharpe GR, Johnson MA

Abstract Share this page

Abstract PURPOSE: The purpose of this study was to investigate the effects of inspiratory threshold loading (ITL) and inspiratory muscle training (IMT) on blood lactate concentration ([lac(-)]B) and acid-base balance after maximal incremental cycling. METHODS: Eighteen subjects were divided into a control (n = 9) or an IMT group (n = 9). Before and after a 6-wk intervention, subjects completed two maximal incremental cycling tests followed by 20 min of recovery with (ITL) or without (passive recovery (PR)) a constant inspiratory resistance (15 cm H2O). The IMT group performed 6 wk of pressure threshold IMT at 50\% maximal inspiratory mouth pressure. Throughout recovery, acid-base balance was quantified using the physicochemical approach by measuring the strong ion difference ([SID] = [Na+] + [K+] - [Cl-] + [lac-]), the total concentration of weak acids ([Atot-]), and the partial pressure of carbon dioxide (PCO2). RESULTS: After the intervention, maximal inspiratory mouth pressure increased in the IMT group only (+34\%). No differences in lactate clearance were observed between PR and ITL before the intervention in both groups and after the intervention in the control group. After IMT, relative to PR, [lac-]B was reduced throughout ITL (minutes 2-20) by 0.66 +/- 1.28 mmol x L(-1) (P < 0.05), and both the fast (lactate exchange) and the slow (lactate clearance) velocity constants of the lactate recovery kinetics were increased (P < 0.05). Relative to pre-IMT, ITL reduced plasma [H], which was accounted for by an IMT-mediated increase in [SID] due almost exclusively to a 1.7-mmol x L(-1) reduction in [lac-]B. CONCLUSIONS: After maximal exercise, ITL affected lactate recovery kinetics only after IMT. Our data support the notion that the inspiratory muscles are capable of lactate clearance that increases [SID] and reduces [H+]. These effects may facilitate subsequent bouts of high-intensity exercise. This article was published in Med Sci Sports Exerc and referenced in Journal of Pulmonary & Respiratory Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

  • Shoude Jin
    Mechanisms of Chronic obstructive pulmonary disease and airway smooth muscle remodeling: the potential roles of Abhd2
    PDF Version
  • Alsayed Alnahal
    Urinary netrin-1 predict early ischemic acute kidney injury after cardiopulmonary bypass
    PPT Version | PDF Version
  • Ping Yang
    Chronic obstructive pulmonary disease (COPD) complicating early-stage lung cancer (LC)
    PDF Version
  • Gunilla Lindqvist
    Chronic obstructive pulmonary disease: A study of the relationship between patients’ feeling of guilt due to their belief of the disease being self inflicted
    PDF Version
  • Roger Mark Engel
    The effect of including manual therapy in the management of mild chronic obstructive pulmonary disease – a randomized controlled trial
    PDF Version
  • Rupal Patel Mansukhani
    Correlation of Medication Therapy in Chronic Obstructive Pulmonary Disease(COPD) Patients with 30-day Readmission Rates
    PPT Version | PDF Version
  • Hadeel Faisal Gad
    In-vitro analysis of cytokines responses of visceral leishmaniasis and pulmonary tuberculosis patients to homologous and heterologous antigen stimulation
    PPT Version | PDF Version
  • Xin Wang
    IL17 Pathway Involves Moderating Pulmonary Hypertension, a common complication of COPD, in Statins Therapy in Smoking Rats
    PPT Version | PDF Version

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords