alexa Localization of small obstacles in Stokes flow


Journal of Applied & Computational Mathematics

Author(s): Fabien Caubet Marc Dambrine

Abstract Share this page

We want to detect small obstacles immersed in a fluid flowing in a larger bounded domain Ω in the three-dimensional case. We assume that the fluid motion is governed by the steady-state Stokes equations. We make a measurement on a part of the exterior boundary ∂Ω and then take a Kohn–Vogelius approach to locate these obstacles. We use here the notion of the topological derivative in order to determine the number of objects and their rough locations. Thus we first establish an asymptotic expansion of the solution of the Stokes equations in Ω when we add small obstacles inside. Then, we use it to find a topological asymptotic expansion of the considered Kohn–Vogelius functional which gives us the formula of its topological gradient. Finally, we make some numerical simulations exploring the efficiency and the limits of this method.

This article was published in Inverse Problems and referenced in Journal of Applied & Computational Mathematics

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version