alexa Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

International Journal of Physical Medicine & Rehabilitation

Author(s): Mohr T, Andersen JL, BieringSrensen F, Galbo H, Bangsbo J,

Abstract Share this page

Abstract Spinal cord injured (SCI) individuals most often contract their injury at a young age and are deemed to a life of more or less physical inactivity. In addition to the primary implications of the SCI, severe SCI individuals are stigmatized by conditions related to their physically inactive lifestyle. It is unknown if these inactivity related conditions are potentially reversible and the aim of the present study was, therefore, to examine the effect of exercise on SCI individuals. Ten such individuals (six with tetraplegia and four with paraplegia; age 27-45 years; time since injury 3-23 years) were exercise trained for 1 year using an electrically induced computerized feedback controlled cycle ergometer. They trained for up to three times a week (mean 2.3 times), 30 min on each occasion. The gluteal, hamstring and quadriceps muscles were stimulated via electrodes placed on the skin over their motor points. During the first training bouts, a substantial variation in performance was seen between the subjects. A majority of them were capable of performing 30 min of exercise in the first bout; however, two individuals were only able to perform a few minutes of exercise. After training for 1 year all of the subjects were able to perform 30 min of continuous training and the work output had increased from 4 +/- 1 (mean +/- SE) to 17 +/- 2 Kilo Joules per training bout (P < 0.05). The maximal oxygen uptake during electrically induced exercise increased from 1.20 +/- 0.08 litres per minute measured after a few weeks habituation to the exercise to 1.43 +/- 0.09 litres per minute after training for 1 year (P < 0.05). Magnetic resonance cross sectional images of the thigh were performed to estimate muscle mass and an increase of 12\% (mean, P < 0.05) was seen in response to 1 year of training. In biopsies taken before exercise various degrees of atrophy were observed in the individual muscle fibres, a phenomenon that was partially normalized in all subjects after training. The fibre type distribution in skeletal muscles is known to shift towards type IIB fibres (fast twitch, fast fatiguable, glycolytic fibres) within the first 2 years after the spinal cord injury. The muscle in the present investigation contained of 63\% myosin heavy chain (MHC) isoform IIB, 33\% MHC isoform IIA (fast twitch, fatigue resistant) and less than 5\% MHC isoform I (slow twitch) before training. A shift towards more fatigue resistant contractile proteins was found after 1 year of training. The percentage of MHC isoform IIA increased to 61\% of all contractile protein and a corresponding decrease to 32\% was seen in the fast fatiguable MHC isoform IIB, whereas MHC isoform I only comprised 7\% of the total amount of MHC. This shift was accompanied by a doubling of the enzymatic activity of citrate synthase, as an indicator of mitochondrial oxidative capacity. It is concluded that inactivity-associated changes in exercise performance capacity and skeletal muscle occurring in SCI individuals after injury are reversible, even up to over 20 years after the injury. It follows that electrically induced exercise training of the paralysed limbs is an effective rehabilitation tool that should be offered to SCI individuals in the future.
This article was published in Spinal Cord and referenced in International Journal of Physical Medicine & Rehabilitation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords