alexa Long-term genome-wide blood RNA expression profiles yield novel molecular response candidates for IFN-beta-1b treatment in relapsing remitting MS.
Immunology

Immunology

Journal of Clinical & Cellular Immunology

Author(s): Goertsches RH, Hecker M, Koczan D, SerranoFernandez P, Moeller S,

Abstract Share this page

Abstract AIMS: In multiple sclerosis patients, treatment with recombinant IFN-beta (rIFN-beta) is partially efficient in reducing clinical exacerbations. However, its molecular mechanism of action is still under scrutiny. MATERIALS & METHODS: We used DNA microarrays (Affymetrix, CA, USA) and peripheral mononuclear blood cells from 25 relapsing remitting multiple sclerosis patients to analyze the longitudinal transcriptional profile within 2 years of rIFN-beta administration. Sets of differentially expressed genes were attained by applying a combination of independent criteria, thereby providing efficient data curation and gene filtering that accounted for technical and biological noise. Gene ontology term-association analysis and scientific literature text mining were used to explore evidence of gene interaction. RESULTS: Post-therapy initiation, we identified 42 (day 2), 175 (month 1), 103 (month 12) and 108 (month 24) differentially expressed genes. Increased expression of established IFN-beta marker genes, as well as differential expression of circulating IFN-beta-responsive candidate genes, were observed. MS4A1 (CD20), a known target of B-cell depletion therapy, was significantly downregulated after one month. CMPK2, FCER1A, and FFAR2 appeared as hitherto unrecognized multiple sclerosis treatment-related differentially expressed genes that were consistently modulated over time. Overall, 84 interactions between 54 genes were attained, of which two major gene networks were identified at an earlier stage of therapy: the first (n = 15 genes) consisted of mostly known IFN-beta-activated genes, whereas the second (n = 12) mainly contained downregulated genes that to date have not been associated with IFN-beta effects in multiple sclerosis array research. CONCLUSION: We achieved both a broadening of the knowledge of IFN-beta mechanism-of-action-related constituents and the identification of time-dependent interactions between IFN-beta regulated genes. This article was published in Pharmacogenomics and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords