alexa Loss of polycystin-1 in human cyst-lining epithelia leads to ciliary dysfunction.
Biochemistry

Biochemistry

Biochemistry & Physiology: Open Access

Author(s): Nauli SM, Rossetti S, Kolb RJ, Alenghat FJ, Consugar MB,

Abstract Share this page

Abstract A "two-hit" hypothesis predicts a second somatic hit, in addition to the germline mutation, as a prerequisite to cystogenesis and has been proposed to explain the focal nature for renal cyst formation in autosomal dominant polycystic kidney disease (ADPKD). It was reported previously that Pkd1(null/null) mouse kidney epithelial cells are unresponsive to flow stimulation. This report shows that Pkd1(+/null) cells are capable of responding to mechanical flow stimulation by changing their intracellular calcium concentration in a manner similar to that of wild-type cells. This paper reports that human renal epithelia require a higher level of shear stress to evoke a cytosolic calcium increase than do mouse renal epithelia. Both immortalized and primary cultured renal epithelial cells that originate from normal and nondilated ADPKD human kidney tubules display normal ciliary expression of the polycystins and respond to fluid-flow shear stress with the typical change in cytosolic calcium. In contrast, immortalized and primary cultured cyst-lining epithelial cells from ADPKD patients with mutations in PKD1 or with abnormal ciliary expression of polycystin-1 or -2 were not responsive to fluid shear stress. These data support a two-hit hypothesis as a mechanism of cystogenesis. This report proposes that calcium response to fluid-flow shear stress can be used as a readout of polycystin function and that loss of mechanosensation in the renal tubular epithelia is a feature of PKD cysts. This article was published in J Am Soc Nephrol and referenced in Biochemistry & Physiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

agriaquaculture@omicsonline.com

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

biochemjournals@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

chemistryjournals@omicsonline.com

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

clinicaljournals@omicsonline.com

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

engineeringjournals@omicsonline.com

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

nutritionjournals@omicsonline.com

1-702-714-7001Extn: 9042

General Science

Andrea Jason

generalscience@omicsonline.com

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

geneticsmolbio@omicsonline.com

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immunomicrobiol@omicsonline.com

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

nursinghealthcare@omicsonline.com

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

medicaljournals@omicsonline.com

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuropsychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

pharmajournals@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords