alexa Low probability activation of Bax Bak can induce selective killing of cancer cells by generating heterogeneity in apoptosis.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Raychaudhuri S, Das SC

Abstract Share this page

Abstract Biomimetic pro-apoptotic agents (e.g., BH3 mimetics) have been shown to activate the intrinsic death pathway (Type 2 apoptosis) selectively in cancer cells, a mechanism that can be key to developing successful anti-cancer therapy. This work reports mathematical modeling and computer simulations to explore the mechanisms for cancer cell apoptosis. The results indicate that a combination of low probability Bid-Bax type reaction along with overexpressed reactant molecules allows specific killing of cancer cells. Low-probability activation of Bax also emerges as a basis for inherent cell-to-cell variability in apoptotic activation. Variations in Bcl-2 to Bax ratio within a cancer cell population can further affect intrinsic fluctuations generated due to the stochastic Bid-Bax reaction. Such heterogeneity in apoptosis resistance can also provide a mechanism for the origin of cells with higher tumorigenic potential (cancer stem-like cells). The implications of our results for cancer therapy, such as in minimizing stochastic fluctuations in cancer cell death, are discussed. This article was published in J Healthc Eng and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version