alexa Low-cost struvite production using source-separated urine in Nepal.
Chemical Engineering

Chemical Engineering

Journal of Chemical Engineering & Process Technology

Author(s): Etter B, Tilley E, Khadka R, Udert KM

Abstract Share this page

Abstract This research investigated the possibility of transferring phosphorus from human urine into a concentrated form that can be used as fertilizer in agriculture. The community of Siddhipur in Nepal was chosen as a research site, because there is a strong presence and acceptance of the urine-diverting dry toilets needed to collect urine separately at the source. Furthermore, because the mainly agricultural country is landlocked and depends on expensive, imported fertilizers, the need for nutrient security is high. We found that struvite (MgNH(4)PO(4)·6H(2)O) precipitation from urine is an efficient and simple approach to produce a granulated phosphorus fertilizer. Bittern, a waste stream from salt production, is a practical magnesium source for struvite production, but it has to be imported from India. Calculations show that magnesium oxide produced from locally available magnesite would be a cheaper magnesium source. A reactor with an external filtration system was capable of removing over 90\% of phosphorus with a low magnesium dosage (1.1 mol Mg mol P), with coarse nylon filters (pore width up to 160±50 μm) and with only one hour total treatment time. A second reactor setup based on sedimentation only achieved 50\% phosphate removal, even when flocculants were added. Given the current fertilizer prices, high volumes of urine must be processed, if struvite recovery should be financially sustainable. Therefore, it is important to optimize the process. Our calculations showed that collecting the struvite and calcium phosphate precipitated spontaneously due to urea hydrolysis could increase the overall phosphate recovery by at least 40\%. The magnesium dosage can be optimized by estimating the phosphate concentration by measuring electrical conductivity. An important source of additional revenue could be the effluent of the struvite reactor. Further research should be aimed at finding methods and technologies to recover the nutrients from the effluent. Copyright © 2010 Elsevier Ltd. All rights reserved. This article was published in Water Res and referenced in Journal of Chemical Engineering & Process Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version