alexa Low-expression variant of fatty acid-binding protein 4 favors reduced manifestations of atherosclerotic disease and increased plaque stability.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular Biomarkers & Diagnosis

Author(s): Saksi J, Ijs P, Myrnp MI, Nuotio K, Isoviita PM,

Abstract Share this page

Abstract BACKGROUND: Fatty acid-binding protein 4 (FABP4 or aP2 in mice) has been identified as a key regulator of core aspects of cardiometabolic disorders, including lipotoxic endoplasmic reticulum stress in macrophages. A functional promoter polymorphism (rs77878271) of human FABP4 gene has been described resulting in reduced FABP4 transcription. METHODS AND RESULTS: We investigated the effects of this low-expression variant of FABP4 on cardiovascular morbidity and carotid atherosclerosis on a population level (n=7491) and in patient cohorts representing endarterectomized patients with advanced carotid atherosclerosis (n=92) and myocardial infarction (n=3432). We found that the low-expression variant was associated with decreased total cholesterol levels (P=0.006) with the largest reduction in variant allele homozygotes. Obese variant allele carriers also showed reduced carotid intima-media thickness (P=0.010) and lower prevalence of carotid plaques (P=0.060). Consistently, the variant allele homozygotes showed 8-fold lower odds for myocardial infarction (P=0.019; odds ratio, 0.12; 95\% confidence interval, 0.003-0.801). Within the carotid plaques, the variant allele was associated with a 3.8-fold reduction in FABP4 transcription (P=0.049) and 2.7-fold reduction in apoptosis (activated caspase 3; P=0.043). Furthermore, the variant allele was enriched to patients with asymptomatic carotid stenosis (P=0.038). High FABP4 expression in the carotid plaques was associated with lipid accumulation, intraplaque hemorrhages, plaque ulcerations, and phosphoactivated endoplasmic reticulum stress markers. CONCLUSIONS: Our results reveal FABP4 rs77878271 as a novel variant affecting serum total cholesterol levels and cardiovascular risk. A therapeutic regimen reducing FABP4 expression within the atherosclerotic plaque may promote lesion stability through modulation of endoplasmic reticulum stress signaling, and attenuation of apoptosis, lipid burden, and inflammation. © 2014 American Heart Association, Inc. This article was published in Circ Cardiovasc Genet and referenced in Journal of Molecular Biomarkers & Diagnosis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords