alexa L-type Ca(2+) channel-mediated Zn(2+) toxicity and modulation by ZnT-1 in PC12 cells.


Journal of Clinical Toxicology

Author(s): Kim AH, Sheline CT, Tian M, Higashi T, McMahon RJ,

Abstract Share this page

Abstract In view of evidence that Zn(2+) neurotoxicity contributes to some forms of pathological neuronal death, we developed a model of Zn(2+) neurotoxicity in a cell line amenable to genetic manipulations. Exposure to 500 microM ZnCl(2) for 15 min under depolarizing conditions resulted in modest levels of PC12 cell death, that was reduced by the L-type Ca(2+) channel antagonist, nimodipine, and increased by the L-type Ca(2+) channel opener, S(-)-Bay K 8644. At lower insult levels (200 micrometer Zn(2+)+Bay K 8644), Zn(2+)-induced death appeared apoptotic under electron microscopy and was sensitive to the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-CH(2)F (Z-VAD); at higher insult levels (1000 microM+Bay K 8644), cells underwent necrosis insensitive to Z-VAD. To test the hypothesis that the plasma membrane transporter, ZnT-1, modulates Zn(2+) neurotoxicity, we generated stable PC12 cell lines overexpressing wild type or dominant negative forms of rat ZnT-1 (rZnT-1). Clones T9 and T23 overexpressing wild type rZnT-1 exhibited enhanced Zn(2+) efflux and reduced vulnerability to Zn(2+)-induced death compared to the parental line, whereas clones D5 and D16 expressing dominant negative rZnT-1 exhibited the opposite characteristics.
This article was published in Brain Res and referenced in Journal of Clinical Toxicology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version