alexa Macrophage activation by culture in an anoxic environment.


Journal of Clinical & Cellular Immunology

Author(s): Albina JE, Henry WL Jr, Mastrofrancesco B, Martin BA, Reichner JS

Abstract Share this page

Abstract The extracellular amino acid composition of experimental wounds in rats during peak macrophage infiltration bears the imprint of the elevated arginase activity present in wound fluid: L-arginine is found in this space in concentrations markedly lower, and L-ornithine in concentrations markedly higher, than those that are detectable in plasma. No evidence, in the form of L-citrulline or NO2- accumulation, can be found at this time for nitric oxide synthase (NOS) activity. Wound-derived macrophages, however, metabolize L-arginine through both arginase and NOS in culture. Given the requirements of NOS for O2 and the reduced O2 tension in wounds, experiments were performed to determine the role of O2 availability on the metabolism of L-arginine by wound-derived macrophages. Results demonstrated that, beyond inhibiting NOS, culture of wound-derived macrophages in an anoxic environment provided an activation signal, markedly increasing total L-arginine metabolism, arginase activity, NOS protein content, and the release of TNF-alpha and IL-6. Neither resident nor Corynebacterium parvum-elicited peritoneal macrophages responded to anoxic culture with increases in L-arginine utilization, arginase activity or, in the case of resident macrophages, in NOS protein content. The enhanced TNF-alpha and IL-6 release induced by anoxia in wound-derived macrophages was also found in resident peritoneal macrophages. Anoxia appears to act, then, as an inducer of activation-associated traits in macrophages obtained from different sites.
This article was published in J Immunol and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version