alexa Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3 STAT5 signaling pathway.

Author(s): Bingisser RM, Tilbrook PA, Holt PG, Kees UR

Abstract Share this page

Abstract Nitric oxide (NO) has been invoked as an important pathogenic factor in a wide range of immunologically mediated diseases. The present study demonstrates that macrophage-derived NO may conversely function to fine tune T cell-mediated inflammation via reversible dephosphorylation of intracellular signaling molecules, which are involved in the control of T cell proliferation. Thus, T cells activated in the presence of alveolar macrophages are unable to proliferate despite expression of IL-2R and secretion of IL-2. This process is reproduced by the NO generator S-nitroso-N-acetylpenicillamine and is inhibitable by the NO synthase inhibitor N(G)-methyl-L-arginine. Analysis of T cell lysates by immunoprecipitation with specific Abs and subsequent immunoblotting indicated marked reduction of tyrosine phosphorylation of Jak3 and STAT5 mediated by NO. Further studies indicated that NO-mediated T cell suppression was reversible by the guanylate cyclase inhibitors methylene blue and LY-83583 and was reproduced by a cell-permeable analogue of cyclic GMP, implicating guanylate cyclase activation as a key step in the inhibition of T cell activation by NO.
This article was published in J Immunol and referenced in

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Recommended Journals

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version