alexa Manganese induces oxidative impairment in cultured rat astrocytes.
Toxicology

Toxicology

Journal of Drug Metabolism & Toxicology

Author(s): Milatovic D, Yin Z, Gupta RC, Sidoryk M, Albrecht J, , Milatovic D, Yin Z, Gupta RC, Sidoryk M, Albrecht J,

Abstract Share this page

Abstract Excessive free radical formation has been implicated as a causative factor in neurotoxic damage associated with exposures to a variety of metals, including manganese (Mn). It is well established that Mn accumulates in astrocytes, affecting their ability to indirectly induce and/or exacerbate neuronal dysfunction. The present study examined the effects of Mn treatment on the following endpoints in primary astrocyte cultures: (1) oxidative injury, (2) alterations in high-energy phosphate (adenosine 5'-triphosphate, ATP) levels, (3) mitochondrial inner membrane potential, and (4) glutamine uptake and the expression of glutamine transporters. We quantified astrocyte cerebral oxidative damage by measuring F(2)-isoprostanes (F(2)-IsoPs) using stable isotope dilution methods followed by gas chromatography-mass spectrometry with selective ion monitoring. Our data showed a significant (p < 0.01) elevation in F(2)-IsoPs levels at 2 h following exposure to Mn (100 microM, 500 microM, or 1 mM). Consistent with this observation, Mn induced a concentration-dependent reduction in ATP and the inner mitochondrial membrane potential (DeltaPsi(m)), measured by the high pressure liquid chromatography method and the potentiometric dye, tetramethyl rhodamine ethyl ester, respectively. Moreover, 30 min of pretreatment with Mn (100 microM, 500 microM, or 1 mM) inhibited the net uptake of glutamine (GLN) ((3)H-glutamine) measured at 1 and 5 min. Expression of the messenger RNA coding the GLN transporters, SNAT3/SN1 and SNAT1, was inhibited after 100 and 500 microM Mn treatment for 24 h. Our results demonstrate that induction of oxidative stress, associated mitochondrial dysfunction, and alterations in GLN/glutamate cycling in astrocytes represent key mechanisms by which Mn exerts its neurotoxicity. This article was published in Toxicol Sci and referenced in Journal of Drug Metabolism & Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords