alexa Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design.
Materials Science

Materials Science

Research & Reviews: Journal of Material Sciences

Author(s): Prashant V Kamat

Abstract Share this page

The Perspective focuses on photoinduced electron transfer between semiconductor–metal and semiconductor–semiconductor nanostructures and factors that influence the rate of electron transfer at the interface. The storage and discharge properties of metal nanoparticles play an important role in dictating the photocatalytic performance of semiconductor–metal composite assemblies. Both electron and hole transfer across the interface with comparable rates are important in maintaining high photocatalytic efficiency and stability of the semiconductor assemblies. Coupled semiconductors of well-matched band energies are convenient to improve charge separation. Furthermore, semiconductor and metal nanoparticles assembled on reduced graphene oxide sheets offer new ways to design multifunctional catalyst mat. The fundamental understanding of charge-transfer processes is important in the future design of light-harvesting assemblies.

This article was published in J PhyChemLett and referenced in Research & Reviews: Journal of Material Sciences

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version